

PYTHON	PROGRAMMING	FOR	BEGINNERS

THE	COMPLETE	BEGINNER’S	GUIDE	TO	PYTHON
PROGRAMMING

Bruce	Berke

©	2018

© 	Copyright	2018	by	Bruce	Berke	-	All	rights	reserved.

This	 document	 is	 geared	 towards	 providing	 exact	 and	 reliable	 information	 in
regards	to	the	topic	and	issue	covered.	The	publication	is	sold	with	the	idea	that
the	 publisher	 is	 not	 required	 to	 render	 accounting,	 officially	 permitted,	 or
otherwise,	 qualified	 services.	 If	 advice	 is	 necessary,	 legal	 or	 professional,	 a
practiced	individual	in	the	profession	should	be	ordered.

-	From	a	Declaration	of	Principles	which	was	accepted	and	approved	equally	by
a	Committee	 of	 the	American	Bar	Association	 and	 a	Committee	 of	Publishers
and	Associations.

In	 no	 way	 is	 it	 legal	 to	 reproduce,	 duplicate,	 or	 transmit	 any	 part	 of	 this
document	 in	 either	 electronic	 means	 or	 in	 printed	 format.	 Recording	 of	 this
publication	is	strictly	prohibited	and	any	storage	of	this	document	is	not	allowed
unless	with	written	permission	from	the	publisher.	All	rights	reserved.

The	 information	provided	herein	 is	 stated	 to	 be	 truthful	 and	 consistent,	 in	 that
any	liability,	in	terms	of	inattention	or	otherwise,	by	any	usage	or	abuse	of	any
policies,	 processes,	 or	 directions	 contained	 within	 is	 the	 solitary	 and	 utter
responsibility	 of	 the	 recipient	 reader.	 Under	 no	 circumstances	 will	 any	 legal
responsibility	 or	 blame	 be	 held	 against	 the	 publisher	 for	 any	 reparation,
damages,	 or	 monetary	 loss	 due	 to	 the	 information	 herein,	 either	 directly	 or
indirectly.

Respective	authors	own	all	copyrights	not	held	by	the	publisher.

The	 information	 herein	 is	 offered	 for	 informational	 purposes	 solely,	 and	 is
universal	 as	 so.	The	presentation	of	 the	 information	 is	without	 contract	or	 any
type	of	guarantee	assurance.

The	trademarks	that	are	used	are	without	any	consent,	and	the	publication	of	the
trademark	 is	 without	 permission	 or	 backing	 by	 the	 trademark	 owner.	 All
trademarks	and	brands	within	this	book	are	for	clarifying	purposes	only	and	are
the	owned	by	the	owners	themselves,	not	affiliated	with	this	document.

TABLE	OF	CONTENTS
Introduction
Chapter	1:	Environment	Setup
Chapter	2:	Python’s	Basics
Chapter	3:	Variable	Types
Chapter	4:	Decision	Makers	in	Python
Chapter	5:	Loops	in	Python
Chapter	6:	Numbers	in	Python
Chapter	7:	Strings	in	Python
Chapter	8:	Lists	and	Tuples
Chapter	9:	Dictionary
Chapter	10:	Functions
Conclusion

INTRODUCTION
Hello,	guys!	I	hope	all	of	you	are	doing	well.	Today,	I	am	bringing	you	a	book
that	 you	 can	 use	 to	 learn	Python.	 If	 you	 are	 a	 beginner	with	 basic	 knowledge
about	computers	and	computer	programing,	 then	 this	 is	 the	book	 for	you.	You
should	own	this	book	if	you	want	to	become	an	intermediate	level	programmer
of	 Python,	 as	 it	 contains	 all	 the	 right	 ingredients.	 Python	 is	 a	 high-level
programming	 language.	 It	 was	 introduced	 in	 1985.	 The	 creator	 of	 Python	 is
Guido	van	Rossum.	Python	 is	very	 famous	among	developers	and	 researchers.
Some	use	this	programming	language	for	web	development,	and	some	use	it	for
writing	 class	 libraries.	 Class	 libraries	 are	 further	 used	 by	 other	 programmers
since	 they	 are	 written	 in	 a	 way	 that	 makes	 them	 re-usable.	 Researchers	 use
Python	 as	 it	 is	widely	 known	 among	 the	 research	 community	 and	 is	 powerful
enough	to	be	used	for	simulations	and	experiments.	I	will	start	from	scratch	and
teach	 you	 how	 to	 install	 Python;	 if	 you	 are	 a	 reader	with	 some	 experience	 in
Python,	I	must	tell	you	that	this	book	might	be	a	bit	slow	paced	for	you.	So,	let’s
start	then.

CHAPTER	1:	ENVIRONMENT	SETUP
Before	we	start	writing	programs	 in	Python,	we	need	 to	 install	necessary	 tools
that	would	 allow	 us	 to	 do	 the	 aforementioned	 task.	You	will	 need	 to	 install	 a
Python	interpreter	and	an	Integrated	Development	Environment	(IDE).	Multiple
Python	Interpreters	are	available,	and	the	following	list	names	them	all:

CPython
IronPython
Anaconda
PyPy
Jython

Each	 interpreter	 is	 somehow	 different	 from	 the	 other,	 and	 the	 differences
between	 each	 does	 not	 concern	 you	 as	 a	 beginner.	 In	 this	 book,	 we	 will	 use
CPython,	which	is	a	standard	Python	interpreter.	To	download	CPython,	we	will
use	 the	 official	 Python	 website.	 To	 make	 things	 simpler,	 I	 am	 pasting	 a	 link
below	that	will	 lead	you	to	the	exact	page	to	which	you	need	to	go	in	order	 to
download	the	latest	version	of	CPython.

https://www.python.org/

Once	you	click	the	link	above,	a	webpage	will	open	in	your	web	browser.	This	is
the	main	page	that	contains	all	the	news,	documentation,	and	download	links	for
different	releases	of	Python.	Hover	on	the	Download	button	present	in	the	menu
bar	at	the	top.	I	am	adding	a	screenshot	too,	just	to	make	things	clearer.

https://www.python.org/

Once	 you	 hover	 on	 the	 Downloads	 option,	 a	 tab	 will	 open	 up.	 Refer	 to	 the
screenshot	mentioned	before	 this	paragraph.	 It	shows	how	the	actual	web	page
will	look	when	the	tab	opens.	Click	on	the	link	that	has	been	highlighted	with	a
red-orange	marker.	This	will	download	an	executable	version	of	Python’s	latest
version,	which	in	this	case	is	3.6.4.

Double	click	the	.exe	file	or	just	press	the	enter	key	after	selecting	the	.exe	file
so	that	you	can	start	the	setup	application.	The	setup	window	will	look	similar	to
the	one	shown	below:

The	reason	why	I	added	the	image	above	is	that,	both	options	(Install	launcher	for	all
users	and	Add	Python	3.6	to	PATH)	must	be	selected.	You	don’t	need	to	customize	the
installation	at	this	stage;	you	might	need	it	once	you	acquire	a	great	amount	of
knowledge	regarding	Python.	Adding	Python	 to	 the	Path	will	allow	you	 to	use
Python	 from	 the	 command	 prompt.	 This	 comes	 in	 handy	 when	 you	 want	 to
execute	Python	commands	from	window’s	cmd	;	the	active	directory	of	the	window’s
cmd	doesn’t	matter	this	way.

After	you	install	Python,	open	the	command	prompt	in	your	Windows	and	write
python	and	press	enter.
Output:
C:\Users\bruce>python

Python	3.6.3	(v3.6.3:2c5fed8,	Oct	3	2017,	17:26:49)	[MSC	v.1900	32	bit	(Intel)]	on	win32
Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.
>>>

I	have	installed	3.6.3	version	of	Python	on	my	system,	so	it’s	showing	that.	You
will	 see	 the	version	 that	 you	have	 installed	 in	your	 system.	 If	 the	query	 that	 I
mentioned	earlier	works,	 then	it	means	that	Python	has	been	installed	correctly
in	your	system	and	Python	has	also	been	added	in	the	environment	variables	of
Windows.

Now	that	we	have	 installed	Python,	 it’s	 time	now	to	 install	an	IDE.	Numerous
ways	are	available	for	using	Python,:	Text	editors	like	notepad++,	Visual	Studio
Code,	Sublime	text	or	even	Window’s	good	old	Notepad	application	can	be	used
to	write	Python	scripts.	You	can	simply	use	Window’s	cmd	to	execute	that	file.	I
am	only	discussing	Window’s	cmd	here	because	in	this	book	the	examples	only
use	 the	 Window’s	 cmd.	 Extensive	 support	 for	 Python	 in	 Linux	 and	 its
distributions	is	also	available.	Feel	free	to	check	them	out	after	you	complete	this
book.	 The	 procedure	 of	 using	 cmd	 to	 execute	 files	 often	 add	 complexity	 to	 a
simpler	task	which	is	not	the	goal	of	this	book.	Avoiding	the	complexities,	this
book	focuses	on	the	easy	and	basic	stuff	related	to	Python.	I	used	Visual	Studio
to	 prepare	 the	 examples	 in	 this	 book.	 To	 download	 Visual	 Studio,	 use	 the
following	link:

https://www.visualstudio.com/downloads/

In	 the	 section:	 Visual	 Studio	 Community	 2017,	 click	 on	 the	 Free	 Download	 button	 to
download	the	setup	of	Visual	Studio	Community.	The	setup	of	Visual	Studio	is

https://www.visualstudio.com/downloads/

fairly	easy.	At	 the	start,	 the	setup	will	ask	you	to	acknowledge	 their	 terms	and
conditions.	Once	you	do	that,	the	setup	will	move	ahead	and	do	its	thing.	Then
after	 some	 time,	 you	 will	 be	 asked	 to	 choose	 the	 workload.	 A	 workload	 is
basically	the	type	of	environment	that	should	be	configured.	In	our	case,	we	only
need	to	configure	our	Visual	Studio	for	Python	Development.	So,	select	Python
development	 and	 install.	Click	 finish	 to	 end	 the	 installation	 process.	A	 launch
button	will	be	present	there	too.	Use	it	to	start	Visual	Studio.

Everything	related	to	the	installation	is	complete.	Now,	it’s	time	to	use	the	tools
that	we	have	configured	so	far	in	this	chapter	for	writing	a	program	in	Python.

CHAPTER	2:	PYTHON’S	BASICS

In	 the	 last	 chapter,	 I	 showed	you	how	 to	 run	 a	Python	 command	 in	 command
prompt.	The	command	that	I	used	in	the	last	chapter	showed	me	the	version	of
Python	 installed	 in	my	 computer.	 I	want	 you	 to	 rerun	 that	 command	 again.	A
cursor	keeps	blinking	in	front	of	the	line	that	looks	like:
>>>

The	cursor	is	waiting	for	you	to	write	a	programming	instruction	in	Python	and
execute	it.	For	example,	print	("Hello	World!")	will	generate:
Output:
C:\Users\x>python
Python	3.6.3	(v3.6.3:2c5fed8,	Oct		3	2017,	17:26:49)	[MSC	v.1900	32	bit	(Intel)]	on	win32
Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.
>>>	print	("Hello	World!")
Hello	World!
>>>

The	 statement	 in	 red	 is	 basically	 the	 output	 of	 the	 print	 command.	 In	 the
terminal,	the	cursor	keeps	on	blinking	after	the	execution	of	each	Python	script.
This	means	 that	 the	Python	 interpreter	 expects	 another	Python	command.	You
can	close	the	Python	interpreter	by	pressing	CTRL+Z	and	pressing	the	enter	key
subsequently.

The	 information	 above	 explains	 a	 way	 that	 can	 be	 used	 to	 write	 programs	 in
Python.	Some	developers	prefer	using	the	terminal	for	writing	programs,	whilst
others	prefer	using	an	IDE.	As	we	are	going	to	use	an	IDE	in	this	book,	go	ahead
and	 launch	 Visual	 Studio.	 Click	 on	 the	 New	 Project	 option.	 In	 the	 new	 project
window,	look	for	an	option	called	Templates	 .	Expand	that	option	and	then	select
Python	.	Now,	after	selecting	the	programming	language	that	you	want	to	use	for
the	new	project,	 it’s	 time	 for	you	 to	 select	 the	 type	of	Python	project	 that	you
want	to	create.	Select	Python	Application	,	give	it	a	name,	and	create	the	project.

The	method	 described	 above	will	 be	 used	 throughout	 this	 book	 to	 create	 new
projects.	All	Python	code	files	have	a	 .py	extension.	So,	when	you	create	a	new
project,	Visual	Studio	is	smart	enough	to	know	which	file	should	be	opened	right
after	 the	project	 creation.	The	name	of	my	project	 is	FirstPythonApplication	 .	So,	 it
will	contain	a	file	named	exactly	the	same	as	the	name	of	the	project.	This	file
will	have	a	.py	extension.

Inside	the	file,	write	the	following	programming	statement	and	click	on	the	start

button.
print	("Hello,	Python	from	Visual	Studio!")

The	 start	 button	will	 have	 a	 green	 play	 button-like	 icon.	 Starting	 the	 program
will	 trigger	 two	 very	 basic	 operations.	 The	 first	 operation	 will	 check	 for	 any
syntactical	errors	present	in	the	code	file.	If	errors	are	present,	Visual	Studio	will
alert	you	about	 them.	There	are	 two	scenarios	here.	The	 first	 scenario	 requires
you	to	rectify	the	errors	present	in	your	script	before	trying	to	run	Python	code
again.	 The	 other	 scenario	 is	 to	 ignore	 the	warning	 and	 force	Visual	 Studio	 to
execute	the	code.	Program	will	not	work	as	it	is	supposed	to	in	the	later	scenario.

The	second	operation	is	executing	the	programming	statements.	Now,	to	explain
this	phenomenon	in	simpler	terms,	I	can	say	that,	after	checking	the	errors,	 the
programming	 statements	 are	 interpreted	 by	 the	 interpreter,	 installed	 in	 our
computer	which	 in	 our	 case	 is	CPython	 .	 It	 translates	 the	 instructions	 and	 sends
them	 to	 the	 operating	 system	 which	 shows	 us	 the	 output.	 Upon	 successful
execution	 of	 the	 program,	 a	 terminal	 window	 will	 open.	 On	 the	 terminal
window,	you	will	see	the	output	similar	to	the	one	shown	here:
Example:
print	("Hello,	Python	from	Visual	Studio!")
Output:
Hello,	Python	from	Visual	Studio!
Press	any	key	to	continue	.	.	.

Writing	 a	Python	program	using	 the	 shell	 is	 known	as	 interactive	programing,
and	using	an	IDE	or	simply	executing	a	.py	file	is	called	scripting.

Python	contains	a	list	of	reserved	keywords.	These	keywords	cannot	be	used	as
identifiers	in	Python.	Identifiers	are	used	to	identify	anything	in	Python.	Things
that	 could	 need	 identifying	 are	 variables,	 objects,	 classes,	 methods,	 etc.	 in
Python.	 Another	 thing	 to	 know	 regarding	 Python	 is	 that	 it	 is	 another	 case
delicate	 programming	 language.	 This	means	 that	 two	 identifiers	 such	 as	 PLAY
and	play	will	be	considered	different	by	Python.	The	list	of	keywords	in	python
is:

and
exec
not
assert
finally
break

or
for
pass
except
yield
in
elif
del
import
from
class
is
else
def
if
global
continue
print
raise
return
with
try
while

You	cannot	use	 the	keywords	above	as	 identifiers.	Python’s	syntax	 is	different
from	many	high-level	languages	like	Java,	C#,	PHP,	etc.	In	Python,	usually	there
are	 no	 semicolons	 used	 to	 terminate	 a	 programming	 statement.	 Semicolons	 in
Python	are	only	used	if	you	want	to	write	two	programming	statements	into	one
line.	 Another	 thing	 in	 Python,	 which	 is	 different	 from	 other	 high-level
languages,	is	that	there	are	no	parenthesis	available.	That	means	in	order	to	tell
Python	that	a	certain	set	of	statements	are	a	part	of	a	block	of	code,	you	need	to
indent	 each	 statement	 correctly.	 If	 your	 indentation	 isn’t	 correct,	 you	 might
encounter	some	errors.	For	example,	this	is	how	you	can	differentiate	between	if
and	else	statements	in	Python:

Example:
if	True:
			print	"The	Statement	is	true"
else:
			print	"The	Statement	is	false"

The	above	code	block	will	work	fine,	as	it	has	been	indented	correctly.	However,
if	we	remove	spaces	before	each	print	statement,	you	will	encounter	an	error,	as
the	interpreter	will	not	be	able	to	differentiate	between	different	code	statements.

Example:
if	True:
print	"The	Statement	is	true"
else:
print	"The	Statement	is	false"

In	 short,	 all	 the	 programming	 statements	 inside	 a	 block	 must	 have	 an	 equal
number	of	whitespaces	 for	 them	 to	 constitute	 a	block	of	 code.	The	 concept	of
indentation	 is	 not	 something	 one	 should	worry	 about.	 Visual	 Studio	 is	 a	 very
powerful	tool,	and	one	of	the	reasons	behind	its	popularity	is	understanding	the
code	 and	 indenting	 it.	 So,	 it	 is	 going	 to	 be	 there	 for	 you	 whilst	 you	 write
indented	code.	There	is	no	need	to	pull	your	hair	out	over	it.

As	 I	 suggested	 earlier,	 in	 other	 languages,	 each	 programming	 statement	 is
terminated	using	the	semi	colon.	But	in	Python,	each	line	is	terminated	by	a	new
line.	 A	 programing	 statement	 can	 span	 over	 different	 lines	 with	 the	 use	 of	 a
continuation	operator	(\).	A	continuation	operator	joins	programming	statements
spanned	over	multiple	rows	for	the	purpose	of	improved	visibility.
Example:
Total_Items	=	item_1	+	\
								 							item_2	+	\
									 								item_3

The	statement	above	is	equal	to	the	programming	statement	below:
Total_Items	=	item_1	+	item_2	+	item_3

The	statements	enclosed	in	round,	square	brackets	or	parenthesis	can	be	written
in	multiple	lines	without	using	the	continuation	operator.

Example:
Total_Items	=	[‘item_1’,	‘item_2’,	‘item_3’,	‘item_4’,	‘item_5’]

Python	 also	 supports	 the	 use	 of	 single	 (‘),	 double	 (“)	 and	 triple	 (‘’’	 or	 “””)
quotation	marks.	The	#	sign	is	used	at	the	start	of	each	comment	in	Python.

Example:
#	With	a	hash	character	at	the	start,	this	is	what	a	comment	looks	like	in	Python.
#	This	is	another	comment.
#	Again!	A	comment	in	Python.
#	The	number	of	comments	allowed	in	Python	is	unlimited.	Just	put	a	#	sign	at	the	start	and	you	#	are	good
to	go.

CHAPTER	3:	VARIABLE	TYPES

Now	 that	 we	 have	 gone	 through	 the	 basic	 syntax	 of	 Python,	 let’s	 talk	 about
variables	 and	 their	 types.	 A	 variable	 can	 be	 defined	 as	 something	 that	 holds
some	 kind	 of	 data.	 That	 data	 could	 be	 a	 number,	 a	 name,	 an	 address,	 or
something	 else.	 Different	 variable	 types	 are	 available	 in	 Python	 for	 the
developers	to	use.

Unlike	 other	 programming	 languages,	 in	 Python	 you	 don’t	 need	 to	 declare	 a
variable	before	assigning	a	value	 to	 it.	When	a	value	 is	assigned	 to	a	variable,
Python’s	 interpreter	 assumes	 that	 this	 is	 a	 new	 variable,	 and	 its	 type	 is	 also
chosen	based	on	 the	 type	of	value	assigned	 to	 it.	Some	common	datatypes	are
integers,	decimals,	strings,	floating	point	values,	etc.

Example:
ID					=	1987										#	A	variable	"ID"	is	holding	an	integer	value	of	1987.
Salary	=	1000.00							#	A	Variable	called	Salary	that	contains	a	value	of	type	Float
Name			=	"Bruce	Wayne"	#	A	string	typed	variable	called	"Name"

print	(ID)
print	(Salary)
print	(Name)

Output:
1987
1000.0
Bruce	Wayne
Press	any	key	to	continue	.	.	.

You	can	assign	a	value	to	multiple	variables	in	Python.	A	single	print	statement
can	be	used	to	display	all	of	them	in	the	output	screen.	In	the	example	below,	the
value	3	has	been	assigned	to	three	different	variables,	and	then	the	value	is	being
printed	using	a	single	print	statement.

Example:
variable_1	=	variable_2	=	variable_3	=	3
print	(variable_1,variable_2,variable_3)

Output:
3	3	3
Press	any	key	to	continue	.	.	.

There	are	five	standard	data	types	available	in	Python.	These	types	are	numbers,
strings,	list,	dictionary,	and	tuple.

The	number	typed	variables	can	be	integers,	long,	float,	and	complex	numbers.	

There	is	no	difference	in	how	these	variables	are	declared.	The	examples	above
show	how	you	can	define	a	number-based	variable	in	Python.

Strings	 in	 Python	 are	 similar	 to	 strings	 in	 any	 other	 programming	 language.
String	typed	variables	hold	a	single	or	set	of	words.	A	string	can	hold	sentences
too.

Example:
stringVariable	=	('Say	my	Name!!!')

print	(stringVariable)							
print	(stringVariable	[2:5])	#	The	statement	prints	the	characters	present	at	position	2	and	5
print	(stringVariable	[0])	#	This	line	of	code	will	only	print	out	the	1st	character	present	#	#	#	#	in	the
variable
print	(stringVariable	[2:])	#	Using	this	line	you	can	print	the	#	value	from	the	3rd	character
print	(stringVariable	+	"TEST")	#	The	value	of	the	stringVariable	#	will	be	joined	with	the	value	"TEST"
print	(stringVariable	*	2)	#	This	will	print	the	value	inside	the	#stringVariable	twice
Output:
Say	my	Name!!!
y	m
S
y	my	Name!!!
Say	my	Name!!!TEST
Say	my	Name!!!Say	my	Name!!!
Press	any	key	to	continue	.	.	.

List	is	another	datatype.	List	is	a	variable	type	that	can	hold	values	of	different
data	 types.	 For	 example,	 you	 can	 have	multiple	 values	 inside	 a	 list,	 and	 each
value	could	be	either	integer	or	string,	etc.
Example:
firstListVariable	=	['mnop',	123	,	8.09,	'bruce',	60.0]
secondListVariable	=	[0.007,	'wayne']

print	(firstListVariable)	#	This	statement	will	print	out	the	entire	list.
print	(firstListVariable[0])	#	This	print	statement	will	only	print	out	the	first	value	present	in	the	list
print	(firstListVariable[1:3])	#This	print	statement	will	show	the	values	presnt	in	the	2nd	and	3rd	index.
print	(firstListVariable[2:])	#	This	print	statement	will	print	out	values	from	the	second	index	and	so	on.
print	(secondListVariable	*	3)	#	This	print	statement	will	print	out	the	list	three	times.
print	(firstListVariable	+	secondListVariable)	#	This	is	how	you	can	join	the	values	of	two	lists	and	print			#
them.
Output:
['mnop',	123,	8.09,	'bruce',	60.0]
mnop
[123,	8.09]
[8.09,	'bruce',	60.0]
[0.007,	'wayne',	0.007,	'wayne',	0.007,	'wayne']

['mnop',	123,	8.09,	'bruce',	60.0,	0.007,	'wayne']
Press	any	key	to	continue	.	.	.

Python	also	contains	basic	operators	of	different	types.	You	can	do	pretty	much
all	 the	 arithmetic,	 logical,	 comparison,	 assignment,	 bitwise,	 and	 many	 more
kinds	of	operations	in	Python.	The	use	of	these	operators	is	very	similar	to	how
they	 are	 used	 in	 mathematics,	 so	 we	 don’t	 need	 to	 go	 into	 those	 details.
Summation,	 subtraction,	multiplication,	 and	 division	work	 just	 like	 they	 do	 in
actual	arithmetic	operations.	You	can	do	comparisons	with	two	digits,	strings,	or
variables	for	that	matter	in	Python	too.	We	have	seen	the	assignment	operator	in
the	examples	above,	where	 I	used	an	equal	 sign	 (=)	 to	assign	 some	value	 to	a
variable.	 You	 could	 also	 benefit	 from	 operations	 like	 shifting	 bits	 and	 taking
compliments.

CHAPTER	4:	DECISION	MAKERS	IN	PYTHON
Programming	 languages	 need	 decision	 makers.	 All	 the	 languages,	 whether	 a
high-level	language	such	as	Python	or	something	low	level	like	C,	has	decision
makers.	To	define	decision	makers	 in	 simpler	 terms,	you	can	 think	of	 them	as
locks	that	open	when	a	certain	key	is	used	to	open	them.	Conditions	are	the	key
thing	in	this	scenario.	If	the	right	key	is	used,	the	condition	satisfies,	and	hence
you	are	allowed	to	open	the	lock;	on	the	other	hand,	if	you	use	an	incorrect	key,
the	lock	will	not	open,	as	the	condition	didn’t	satisfy.	In	programing,	conditional
operators	work	very	similarly	to	the	analogy	of	locks	and	keys.	If	a	condition	or
set	of	conditions	inside	a	block	are	true,	then	some	corresponding	programming
statements	 are	 executed.	 If	 that	 condition	 is	 false,	 then	 a	 certain	 set	 of
programming	statements	present	inside	the	conditional	blocks	are	ignored.

There	are	three	types	of	decision	makers	available	in	Python.	An	If	statement	,	If-Else
statement	and	a	nested	If	or	If-Else	statement	.	If	you	want	to	learn	about	each	conditional
statement	 and	 its	 use	 along	 with	 examples,	 you	 should	 carefully	 read	 this
chapter.	Let’s	start	with	the	simplest	decision	maker	of	all:	the	if	statement.	The	if
statement	is	very	simple.	If	a	condition	is	satisfied,	a	certain	set	of	programming
statements	 get	 executed	 by	 the	 interpreter.	On	 the	 contrary,	 if	 the	 condition	 is
false,	 then	 the	 programming	 statements	 inside	 the	 conditional	 if	 block	 are
ignored.

Example:
Variable_One	=	100
if	Variable_One:
			print	("The	value	of	Variable_One	is	100")
			print	(Variable_One)

Variable_Two	=	0
if	Variable_Two:
			print	("The	value	of	Variable_Two	is	100")
			print	(Variable_Two)
print	("Bye	bye!")

Output:
The	value	of	Variable_One	is	100
100
Bye	bye!
Press	any	key	to	continue	.	.	.

The	example	above	contains	two	if	statements;	each	if	statement	is	dealing	with	a
different	variable,	and	both	 these	variables	hold	a	different	value.	 If	 the	 first	 If

statement	 had	 returned	 false,	 the	 output	 would	 have	 been	 different,	 but	 in	 the
example	above,	both	 the	conditions	are	 returning	 true.	The	 reason	behind	such
behavior	 is	 that	we	aren’t	actually	using	a	condition	 in	 the	 if	 block	 ,	we	are	 just
passing	 it	 a	 value,	 and	 it	 will	 consider	 the	 value	 as	 true.	 The	 example	 below
contains	 some	 conditions	 that	 are	 being	 applied	 on	 the	 variables.	 Let’s	 check
them	 out.	 In	 the	 following	 example,	 we	 are	 checking	 whether	 the	 value	 of
Variable_One	is	smaller	than	101	or	not.	The	second	if	statement	checks	whether	the
value	in	Variable_Two	 is	equal	 to	zero	or	not.	Both	the	conditions	are	true,	so	as	a
result,	the	print	statements	in	each	conditional	block	will	be	executed.

Example:
Variable_One	=	100
if	Variable_One	<	101:
			print	("The	value	of	Variable_One	is	100")
			print	(Variable_One)

Variable_Two	=	0
if	Variable_Two	==	0:
			print	("The	value	of	Variable_Two	is	0")
			print	(Variable_Two)
print	("Bye	bye!")
Output:
The	value	of	Variable_One	is	100
100
The	value	of	Variable_Two	is	0
0
Bye	bye!
Press	any	key	to	continue	.	.	.

In	 the	 following	 code	 example,	 none	 of	 the	 conditions	mentioned	 inside	 the	 if
statements	 are	 true,	 so	 as	 a	 result,	 only	 the	 print	 statement	 outside	 both
conditional	blocks	will	execute.

Example:
Variable_One	=	100
if	Variable_One	==	101:
			print	("The	value	of	Variable_One	is	100")
			print	(Variable_One)

Variable_Two	=	0
if	Variable_Two	>	0:
			print	("The	value	of	Variable_Two	is	0")
			print	(Variable_Two)
print	("Bye	bye!")
Output:
Bye	bye!

Press	any	key	to	continue	.	.	.

I	 hope	 that	 the	 examples	 shown	 above	 have	 taught	 you	 everything	 that	 you
should	know	about	 the	If	conditional	statement.	Let’s	now	talk	about	 the	 If-Else
statement.	 In	 the	 If-Else	 block,	 if	 the	condition	 isn’t	 true,	 then	whatever	code	 is
present	in	the	else	block	gets	executed.	The	example	below	is	checking	whether
the	 value	 in	 Variable_One	 is	 equal	 to	 101	 .	 The	 answer	 is	 no,	 so	 the	 value	 of
Variable_One	is	not	equal	to	101	.	So,	the	if	block	will	be	skipped,	and	the	IDE	will
go	to	the	else	block,	and	it	will	execute	the	print	statement	inside	the	else	block.

Example:
Variable_One	=	100
if	Variable_One	==	101:
			print	("The	value	of	Variable_One	is	100")
			print	(Variable_One)
else:
				print("Hello	from	the	else	block")

Output:
Hello	from	the	else	block
Press	any	key	to	continue	.	.	.

With	a	slight	change	in	condition,	 the	example	below	will	skip	 the	code	in	 the
else	block	and	will	only	execute	the	print	statements	present	in	the	If	block.

Example:
Variable_One	=	100
if	Variable_One	==	100:
			print	("The	value	of	Variable_One	is	100")
			print	(Variable_One)
else:
				print("Hello	from	the	else	block")

Output:
The	value	of	Variable_One	is	100
100
Press	any	key	to	continue	.	.	.

The	final	type	of	conditional	blocks	available	in	Python	are	the	nested	decision
makers.	The	nested	decision	makers	are	just	blocks	of	code	that	have	conditional
blocks	inside	another	conditional	block.	For	instance,	in	the	example	mentioned
below,	 there	 are	 two	 conditions;	 the	 first	 condition	 (parent	 condition)	 is
comparing	 the	 value	 of	 Variable_One	 with	 100	 .	 The	 result	 of	 that	 condition	 is
obviously	 true,	 so	 the	 cursor	 moves	 on	 to	 the	 second	 if	 statement	 (child
condition)	which	checks	whether	the	Varible_One’s	value	is	greater	than	seventy	or
not.	As	both	conditions	are	true,	the	print	statement	from	both	if	blocks	will	be

executed.

Example:
Variable_One	=	100
if	Variable_One	==	100:
				if	Variable_One	>	70:
								print	("Hello	from	the	nest	conditional	block")
				print	(Variable_One)
else:
				print("Hello	from	the	else	block")

Output:
Hello	from	the	nest	conditional	block
100
Press	any	key	to	continue	.	.	.

But	what	if	only	the	parent	condition	is	true?	Well	in	that	case,	the	programming
statements	 present	 in	 only	 the	 parent	 condition’s	 block	 will	 be	 executed,	 and
everything	else	will	be	ignored.

Example:
Variable_One	=	100
if	Variable_One	==	100:
				if	Variable_One	<	70:
								print	("Hello	from	the	nest	conditional	block")
				print	(Variable_One)
else:
				print("Hello	from	the	else	block")

Output:
100
Press	any	key	to	continue	.	.	.

CHAPTER	5:	LOOPS	IN	PYTHON
There	are	 three	kinds	of	 loops	present	 in	Python:	 for	 loop,	while	 loop,	and	nested
loop.	The	kinds	of	loops	present	in	Python	are	no	different	to	the	kinds	available
in	other	programming	languages.	The	concepts	behind	the	working	of	each	loop
is	 also	 similar.	 The	 only	 difference	 is	 the	 syntax,	 and	 that	 is	 because	 of	 the
difference	of	syntaxes	present	between	various	programming	languages.	Python
doesn’t	provide	support	for	a	do-while	loop	by	convention,	but	you	can	write	a
loop	yourself	 that	 can	work	 just	 like	 a	 do-while	 loop.	 For	 loop	will	 be	 discussed
first.	It	is	a	very	commonly	used	loop.	The	basic	Idea	of	a	for	loop	is	that	it	keeps
executing	 the	 programming	 statements	 present	 in	 its	 block	 until	 the	 condition
being	checked	turns	false.	The	condition	is	checked	at	the	start	of	each	iteration
of	the	loop.

Example:
for	character	in	'Python	for	Beginners':					
				print	('Current	character	in	the	iteration	:',	character)

Output:
Current	character	in	the	iteration	:	P
Current	character	in	the	iteration	:	y
Current	character	in	the	iteration	:	t
Current	character	in	the	iteration	:	h
Current	character	in	the	iteration	:	o
Current	character	in	the	iteration	:	n
Current	character	in	the	iteration	:
Current	character	in	the	iteration	:	f
Current	character	in	the	iteration	:	o
Current	character	in	the	iteration	:	r
Current	character	in	the	iteration	:
Current	character	in	the	iteration	:	B
Current	character	in	the	iteration	:	e
Current	character	in	the	iteration	:	g
Current	character	in	the	iteration	:	i
Current	character	in	the	iteration	:	n
Current	character	in	the	iteration	:	n
Current	character	in	the	iteration	:	e
Current	character	in	the	iteration	:	r
Current	character	in	the	iteration	:	s
Press	any	key	to	continue	.	.	.

I	 love	 Python	 for	 its	 simplicity	 and	 minimalistic	 design,	 to	 be	 honest.	 The
amount	of	work	 that	 I	did,	using	 just	 two	statements	of	Python	 in	 the	example
above,	is	awesome.	If	I	had	to	replicate	the	above-mentioned	output	using	some
other	high-level	programming	language,	it	would	have	been	a	little	bit	lengthier.

The	example	above	is	very	simple;	it’s	taking	a	string	Python	 for	Beginners	and	it’s
counting	its	characters.	In	each	iteration,	the	loop	takes	one	character	and	prints
it	out.	Number	of	characters	in	the	string:	Python	 for	Beginners	 is	equal	to	20.	20	is
also	the	number	of	times	the	loops	will	execute.	For	loop	is	also	used	to	traverse
elements	of	a	list	or	any	other	data	structure	available	in	Python.

The	second	type	of	loop	that	is	available	in	Python	is	the	while	loop.	There	is	no
conceptual	 difference	 in	 how	 a	while	 and	 a	 for	 loop	work.	 It	 keeps	 on	 iterating
until	 the	 condition	 specified	 to	 it	 is	 true.	 The	 loop	 shown	 below	will	 keep	 on
executing	until	the	counter	reaches	25.	By	the	end	of	each	iteration,	a	value	will	be
printed	 on	 the	 screen.	 This	 value	 happens	 to	 be	 a	 counter.	 Before	 exiting	 the
iteration,	 one	will	 be	 added	 to	whatever	 value	 is	 stored	 in	 the	 counter	 variable.
When	the	counter	will	not	be	less	than	25,	the	condition	inside	while	loop	will	turn
false	which	will	terminate	the	loop	execution.	See	the	following	example:

Example:
counter	=	0
while	(counter	<	25):
			print	('The	value	inside	the	counter	is:	',	counter)
			counter	=	counter	+	1

Output:
The	value	inside	the	counter	is:		0
The	value	inside	the	counter	is:		1
The	value	inside	the	counter	is:		2
The	value	inside	the	counter	is:		3
The	value	inside	the	counter	is:		4
The	value	inside	the	counter	is:		5
The	value	inside	the	counter	is:		6
The	value	inside	the	counter	is:		7
The	value	inside	the	counter	is:		8
The	value	inside	the	counter	is:		9
The	value	inside	the	counter	is:		10
The	value	inside	the	counter	is:		11
The	value	inside	the	counter	is:		12
The	value	inside	the	counter	is:		13
The	value	inside	the	counter	is:		14
The	value	inside	the	counter	is:		15
The	value	inside	the	counter	is:		16
The	value	inside	the	counter	is:		17
The	value	inside	the	counter	is:		18
The	value	inside	the	counter	is:		19
The	value	inside	the	counter	is:		20
The	value	inside	the	counter	is:		21
The	value	inside	the	counter	is:		22
The	value	inside	the	counter	is:		23
The	value	inside	the	counter	is:		24

Press	any	key	to	continue	.	.	.

You	could	also	decrement	the	counter	instead	of	incrementing	it.	I	will	make	some
changes	in	the	above	example,	and	it	will	print	values	from	25	to	1	.

Example:
counter	=	25
while	(counter	>	0):
			print	('The	value	inside	the	counter	is:	',	counter)
			counter	=	counter	-	1

Output:
The	value	inside	the	counter	is:		25
The	value	inside	the	counter	is:		24
The	value	inside	the	counter	is:		23
The	value	inside	the	counter	is:		22
The	value	inside	the	counter	is:		21
The	value	inside	the	counter	is:		20
The	value	inside	the	counter	is:		19
The	value	inside	the	counter	is:		18
The	value	inside	the	counter	is:		17
The	value	inside	the	counter	is:		16
The	value	inside	the	counter	is:		15
The	value	inside	the	counter	is:		14
The	value	inside	the	counter	is:		13
The	value	inside	the	counter	is:		12
The	value	inside	the	counter	is:		11
The	value	inside	the	counter	is:		10
The	value	inside	the	counter	is:		9
The	value	inside	the	counter	is:		8
The	value	inside	the	counter	is:		7
The	value	inside	the	counter	is:		6
The	value	inside	the	counter	is:		5
The	value	inside	the	counter	is:		4
The	value	inside	the	counter	is:		3
The	value	inside	the	counter	is:		2
The	value	inside	the	counter	is:		1
Press	any	key	to	continue	.	.	.

So,	 with	 minor	 changes,	 I	 was	 successful	 in	 printing	 the	 numbers	 in	 reverse.
These	kinds	of	tweaks	are	very	good	practice	for	you	as	a	beginner,	as	they	give
you	an	insight	into	how	these	concepts	work.	I	would	encourage	you	to	go	ahead
and	play	with	the	code	above.	Try	printing	out	something	else	with	the	help	of
the	loops	above.

Just	like	nested	decision	makers,	we	have	nested	loops.	A	nested	loop	is	basically
a	 loop	 inside	 another	 loop.	 For	 example,	 a	 while	 loop	 inside	 a	 for	 loop	 is	 an

example	of	a	nested	loop.	A	 for	 loop	inside	a	while	 loop	is	also	an	example	of	a
nested	 loop.	 In	 the	 following	 examples,	 I	 will	 show	 you	 how	 both	 the
aforementioned	 cases	 could	 be	 written	 as	 loops	 in	 Python.	 The	 first	 example
contains	 two	while	 loops.	The	 end	product	 of	 the	 code	below	 is	 a	 list	 of	 prime
numbers	that	are	between	one	and	one	hundred.

Example:
number_One	=	2
while(number_One	<	100):
			number_Two	=	2
			while(number_Two	<=	(number_One/number_Two)):
						if	not(number_One%number_Two):	break
						number_Two	=	number_Two	+	1
			if	(number_Two	>	number_One/number_Two)	:	print	(number_One,	"	is	prime	number	between	one	and
hundred!")
			number_One	=	number_One	+	1

Output:
2		is	prime	number	between	one	and	hundred!
3		is	prime	number	between	one	and	hundred!
5		is	prime	number	between	one	and	hundred!
7		is	prime	number	between	one	and	hundred!
11		is	prime	number	between	one	and	hundred!
13		is	prime	number	between	one	and	hundred!
17		is	prime	number	between	one	and	hundred!
19		is	prime	number	between	one	and	hundred!
23		is	prime	number	between	one	and	hundred!
29		is	prime	number	between	one	and	hundred!
31		is	prime	number	between	one	and	hundred!
37		is	prime	number	between	one	and	hundred!
41		is	prime	number	between	one	and	hundred!
43		is	prime	number	between	one	and	hundred!
47		is	prime	number	between	one	and	hundred!
53		is	prime	number	between	one	and	hundred!
59		is	prime	number	between	one	and	hundred!
61		is	prime	number	between	one	and	hundred!
67		is	prime	number	between	one	and	hundred!
71		is	prime	number	between	one	and	hundred!
73		is	prime	number	between	one	and	hundred!
79		is	prime	number	between	one	and	hundred!
83		is	prime	number	between	one	and	hundred!
89		is	prime	number	between	one	and	hundred!
97		is	prime	number	between	one	and	hundred!
Press	any	key	to	continue	.	.	.

In	simpler	terms,	you	can	say	that	the	first	while	loop	checks	whether	the	number
passed	to	it	is	a	prime	or	not.	The	inner	while	loop	makes	sure	that	if	the	number

is	not	a	prime	and	it	returns	a	remainder,	then	the	loop	should	skip	that	iteration
after	 incrementing	 the	value	of	 variable:	 number_One	 .	The	 increment	 statements
are	 available	 in	 both	 loops	 so	 that	 no	 matter	 what	 condition	 satisfies,	 each
iteration	gets	to	add	one	in	the	value	of	one.	There	are	some	keywords	that	you
are	seeing	for	the	first	time.	I	will	explain	each	keyword	used	in	the	loops	with	a
certain	set	of	examples.	For	now,	 let’s	see	another	example	 in	which	 the	outer
loop	is	while	and	the	inner	loop	is	for	.	The	for	loop	will	go	through	the	list	of	four
numbers	and	will	print	 them	one	by	one	 in	each	 iteration.	After	 the	 inner	 loop
ends	iterating,	an	iteration	of	while	loop	will	also	end.	At	the	end	of	each	iteration
of	while	 loop,	an	 iteration	number	will	be	displayed	on	 the	output	stream.	After
that,	the	next	iteration	of	the	while	loop	will	start,	and	the	for	loop	will	run	again
and	will	print	all	the	numbers	from	one	to	four.	This	process	will	continue	until
the	value	inside	the	variable	name	number_One	is	either	equal	to	or	greater	than	the
number	five.

Example:
number_One	=	1
while	(number_One	<	5):
				for	x	in	[1,2,3,4]:
								print	("The	value	of	x	is:",	x)
				print	("This	is	the	iteration	number",number_One	,"of	the	While	Loop!")
				number_One	=	number_One	+	1

Output:
The	value	of	x	is:	1
The	value	of	x	is:	2
The	value	of	x	is:	3
The	value	of	x	is:	4
This	is	the	iteration	number	1	of	the	While	Loop!
The	value	of	x	is:	1
The	value	of	x	is:	2
The	value	of	x	is:	3
The	value	of	x	is:	4
This	is	the	iteration	number	2	of	the	While	Loop!
The	value	of	x	is:	1
The	value	of	x	is:	2
The	value	of	x	is:	3
The	value	of	x	is:	4
This	is	the	iteration	number	3	of	the	While	Loop!
The	value	of	x	is:	1
The	value	of	x	is:	2
The	value	of	x	is:	3
The	value	of	x	is:	4
This	is	the	iteration	number	4	of	the	While	Loop!
Press	any	key	to	continue	.	.	.

There	are	three	keywords	related	to	loops,	which	you	should	know	about.	They
are	 break	 ,	 continue	 and	 pass	 .	As	 the	name	suggests,	 the	 break	 keyword	breaks	 the
loop	in	which	it	is	used.	Now,	breaking	a	loop	means	that	whenever	the	IDE	hits
a	 break	 statement,	 it	 skips	 everything	 below	 it	 in	 that	 code	 block.	 In	 case	 of	 a
loop,	the	break	statement	will	make	the	code	skip	everything	written	in	the	code
block	of	a	 loop	and	will	exit	 it.	But	when	break	 is	used	 in	anything	else,	 it	will
skip	anything	 that	 comes	after	 it	 and	will	 take	 the	cursor	at	 the	end	 the	block.
Let’s	see	an	example,	which	will	clarify	things.

Example:
for	character	in	'Python	for	Beginners':					
					if	character	==	"n":
									break
					print	('Current	character	in	the	iteration	:',	character)

Output:
Current	character	in	the	iteration	:	P
Current	character	in	the	iteration	:	y
Current	character	in	the	iteration	:	t
Current	character	in	the	iteration	:	h
Current	character	in	the	iteration	:	o
Press	any	key	to	continue	.	.	.

When	the	loop	got	to	the	character	n	 ,	 it	hit	 the	break	statement,	and	after	 that,
the	loop	was	over.	We	could	get	a	similar	output	with	a	while	loop.	The	example
below	shows	how	the	loop	was	interrupted	when	the	value	of	the	variable	became
five.

Example:
variable	=	1																		
while	variable	>	0:														
			print	(“Value	is:”,	variable)
			variable	=	variable	+	1
			if	variable	==	5:
						break

Output:
Value	is:	1
Value	is:	2
Value	is:	3
Value	is:	4
Press	any	key	to	continue	.	.	.

The	continue	statement	is	used	to	skip	an	iteration	in	a	loop.	It	skips	whatever	code
comes	after	it	and	takes	the	cursor	at	the	starting	point	of	the	loop.	I	will	use	the
examples	above	and	will	show	you	the	difference	after	making	a	minor	change.
The	code	below	will	skip	the	iteration	when	the	value	is	5.	After	skipping	value:

five,	the	rest	of	the	numbers	will	be	displayed	on	the	screen.

Example:
variable	=	11																		
while	variable	>	0:														

			variable	=	variable	-	1
			if	variable	==	5:
						continue
			print	('Value	is	:',	variable)

Output:
Value	is	:	10
Value	is	:	9
Value	is:	8
Value	is:	7
Value	is:	6
Value	is:	4
Value	is:	3
Value	is:	2
Value	is:	1
Value	is:	0
Press	any	key	to	continue	.	.	.

Now	 in	 the	 following	 example,	 I	 am	 using	 a	 for	 loop	 and	 a	 continue	 keyword.
Whenever	 the	 loop	 will	 encounter	 the	 letter	 n	 ,	 it	 will	 skip	 the	 iteration.	 The
output	of	the	following	code	doesn’t	contain	the	letter	n.

Example:
for	character	in	'Python	for	Beginners':					
					if	character	==	"n":
									continue
					print	('Current	character	in	the	iteration	:',	character)

Output:
Current	character	in	the	iteration	:	P
Current	character	in	the	iteration	:	y
Current	character	in	the	iteration	:	t
Current	character	in	the	iteration	:	h
Current	character	in	the	iteration	:	o
Current	character	in	the	iteration	:
Current	character	in	the	iteration	:	f
Current	character	in	the	iteration	:	o
Current	character	in	the	iteration	:	r
Current	character	in	the	iteration	:
Current	character	in	the	iteration	:	B
Current	character	in	the	iteration	:	e
Current	character	in	the	iteration	:	g
Current	character	in	the	iteration	:	i

Current	character	in	the	iteration	:	e
Current	character	in	the	iteration	:	r
Current	character	in	the	iteration	:	s
Press	any	key	to	continue	.	.	.

You	 might	 encounter	 a	 scenario	 when	 you	 have	 to	 write	 a	 programming
statement	just	to	support	the	syntax	without	changing	any	values	or	calling	any
functions.	 Python	 supports	 a	 keyword	 called	 pass	 ,	 designed	 specifically	 for
something	 like	 this.	 It	 is	 more	 like	 a	 null	 operation,	 and	 it	 doesn’t	 mean
anything.	 It	doesn’t	change	any	value	or	affect	any	condition.	 It	 is	used	 just	 to
support	the	syntax.	Use	pass	like	this:

Example:
for	character	in	'Python	for	Beginners':					
					if	character	==	"n":
									pass
									print("pass	statement	has	been	hit!!")
					print	('Current	character	in	the	iteration	:',	character)
Output:
Current	character	in	the	iteration	:	P
Current	character	in	the	iteration	:	y
Current	character	in	the	iteration	:	t
Current	character	in	the	iteration	:	h
Current	character	in	the	iteration	:	o
pass	statement	has	been	hit!!
Current	character	in	the	iteration	:	n
Current	character	in	the	iteration	:
Current	character	in	the	iteration	:	f
Current	character	in	the	iteration	:	o
Current	character	in	the	iteration	:	r
Current	character	in	the	iteration	:
Current	character	in	the	iteration	:	B
Current	character	in	the	iteration	:	e
Current	character	in	the	iteration	:	g
Current	character	in	the	iteration	:	i
pass	statement	has	been	hit!!
Current	character	in	the	iteration	:	n
pass	statement	has	been	hit!!
Current	character	in	the	iteration	:	n
Current	character	in	the	iteration	:	e
Current	character	in	the	iteration	:	r
Current	character	in	the	iteration	:	s
Press	any	key	to	continue	.	.	.

As	you	can	see	in	the	example	mentioned	above,	when	loop	hits	the	character	n	,
the	pass	block	gets	executed.	Infinite	loop	is	also	a	concept	that	you	should	know
before	I	conclude	this	chapter.	An	infinite	loop	is	a	while	loop	that	never	terminates

and	keeps	on	executing.

Example:
variable	=	1
while	variable	==	1:
				print	("Infinte	loop")
Output:
Infinte	loop
Infinte	loop
Infinte	loop
Infinte	loop
Infinte	loop
Infinte	loop
Infinte	loop
Infinte	loop
And	so	on.		(This	is	just	a	very	small	part	of	the	output)

You	 can	 use	 else	 keyword	 with	 for	 or	 while	 loops	 too.	 The	 else	 keyword	 works
differently	for	a	while	and	for	loop.	For	while	loop,	when	the	condition	turns	false,	a
signal	is	sent	to	the	else	block.	That	signal	or	instructions	execute	the	else	block

Example:
variable	=	11																		
while	variable	>	0:														

			variable	=	variable	-	1
			if	variable	==	5:
						continue
			print	('Current	variable	value	:',	variable)
else:
				print("The	While	loop	has	stopped	iterating")

Output:
Current	variable	value	:	10
Current	variable	value	:	9
Current	variable	value	:	8
Current	variable	value	:	7
Current	variable	value	:	6
Current	variable	value	:	4
Current	variable	value	:	3
Current	variable	value	:	2
Current	variable	value	:	1
Current	variable	value	:	0
The	While	loop	has	stopped	iterating
Press	any	key	to	continue	.	.	.

In	the	 for	 loop,	the	else	block	executes	when	the	 for	 loop	finishes	processing	and

executing	all	the	programing	statements	in	it.

Example:
for	character	in	'Python	for	Beginners':					
					if	character	==	"n":
									pass
									print("pass	statement	has	been	hit!!")
					#print	('Current	character	in	the	iteration	:',	character
else:
					print("For	loop	has	stopped	the	iteration	process!!")

Output:
pass	statement	has	been	hit!!
pass	statement	has	been	hit!!
pass	statement	has	been	hit!!
For	loop	has	stopped	the	iteration	process!!
Press	any	key	to	continue	.	.	.

CHAPTER	6:	NUMBERS	IN	PYTHON
So	far,	we	only	looked	at	the	generic	definition	of	data	types;	in	this	chapter	and
subsequent	chapters,	I	will	teach	you	details	about	the	main	data	types	present	in
Python.	 Numbers	 represent	 anything	 that	 is	 either	 a	 digit	 or	 a	 floating	 point.
Python	 also	 supports	 complex	 numbers.	 Specifically,	 integers	 ,	 floating	 points	 ,	 long
and	complex	are	the	kind	of	data	types	that	fall	under	the	umbrella	of	number	class.

Integers	are	just	numbers	like	1,2,3,4	etc.	Long	data	type	also	contains	integers,	but
the	range	of	numbers	it	supports	is	wider	as	compared	to	simple	integer	data	type.
Floating	point	number	is	any	number	that	has	a	decimal	point	in	it.	For	example,	1.1,
4.5,	 8.9,	 23.4589	 etc.	 belong	 to	 the	 floating	 points	 .	 Floating	 points	 are	 also	 called	 floats	 .
Although	complex	numbers	are	seldom	used	in	Python	programming,	the	support
for	 them	 in	 Python	 is	 present.	 A	 complex	 number	 is	 a	 number	 which	 has	 an
imaginary	number	I	(Square	root	of	-1)	with	a	real	co-	efficient.

Several	 built-in	 conversion	mechanisms	 are	 available	 in	 Python.	 You	 can	 use
these	methods	to	convert	various	types	of	inputs	into	your	desired	data	type.	The
table	below	is	explaining	the	meaning	of	each	method.

Method Meaning
int	(variable) This	 method	 will	 convert	 the

variable’s	datatype	to	an	integer
long	(variable) This	 method	 will	 convert	 the

variable’s	datatype	to	long	.
complex	(variable) When	 you	 pass	 a	 variable	 to	 this

function,	it	will	change	its	datatype	to
complex.	 Since	 there	 is	 only	 one
value	 being	 passed	 to	 the	 function,
the	variable	will	become	the	real	part,
and	the	imaginary	part	will	be	zero.

complex	 (variable_One,
variable_Two)

In	 this	 case,	 variable_One	 will	 become
the	 real	 part,	 and	 variable_Two	 will
become	 the	 imaginary	 part	 of	 the
complex	number.

Many	other	mathematical	 functions	are	available	 in	Python	 too.	 I	will	not	 talk
about	all	of	them,	but	I	will	discuss	a	few.	You	can	google	the	rest	of	them	on

your	own.

Method Meaning
sqrt	(variable) This	 method	 will	 perform	 a	 square

root	operation	on	the	variable.
pow	(variable_One,	Variable_Two) variable_One	 will	 act	 as	 the	 base,	 and

variable_Two	 will	 act	 as	 the	 exponent.
The	method	 is	 used	 to	 take	 a	 power
of	the	base	value	passed	to	it.

ciel	(variable) This	function	works	exactly	how	ceil
works	in	mathematics

floor	(variable) Use	this	method	to	take	the	floor	of	a
given	input.

log	(variable) You	can	 take	 log	of	a	variable	using
this	built-in	method.

max	(var1,	var2,	var3,…..) This	 is	 how	 you	 can	 calculate	 the
maximum	 number	 present	 among	 a
series	of	input	variables	or	values.

min	(var1,	var2,	var3,…..) This	 is	 how	 you	 can	 calculate	 the
minimum	 number	 present	 among	 a
series	of	input	variables	or	values.

A	number	of	methods	that	perform	trigonometric	operations	are	also	present	in
Python.	Here’s	a	list:

acos
asin
atan
atan2
hypot
cos
sin
tan
degrees
radian

Mathematical	constants	like	π	(pi)	and	e	are	also	available	in	Python.

CHAPTER	7:	STRINGS	IN	PYTHON
You	have	seen	the	use	of	strings	in	the	previous	chapters;	in	this	chapter,	we	will
see	everything	important	related	to	strings.	As	defined	earlier,	a	string	is	basically
a	 sequence	 of	 characters.	 For	 example,	 the	 most	 common	 and	 trivial	 string
example	in	Python	is	“Hello	World	”.	Another	example	is:	“This	is	a	string.	”
Sub	string	is	a	portion	of	another	string.	In	Python,	you	can	access	a	substring	from
a	string	like	this:

Example:
string1	=	'Hello	World!'
string2	=	"This	book	teaches	Python	programming	to	beginners"

print	("string1	[1]:	",	string1	[1])
print	("string2	[1	:	15]:	",	string2	[1	:	15])
Output:
string1	[1]:		e
string2	[1	:	15]:		his	book	teach
Press	any	key	to	continue	.	.	.

In	 the	 above-mentioned	 example,	 there	 are	 two	 print	 statements	 and	 two
variables	 that	 contain	 different	 strings.	 Each	 print	 statement	will	 print	 different
portions	of	a	string.	You	must	be	wondering,	why	does	the	print	statement:	print
("string1	 [1]:	 ",	 string1	 [1]),	 say	 string1	 [1]?	 It	means	 that	 you	 should	 take	 the	 value
present	 in	 the	 variable	 named	 string1	 and	 get	 the	 character	 present	 at	 the	 index
number	 1	 .	 The	 result	 is	 showing	 the	 character	 “e	 ”	 as	 an	 output	 because,	 in
Python,	 the	 index	 starts	 from	 zero	 (0)	 .	 So,	 index	when	 1	will	mean	 the	 second
character.	The	second	print	statement	is	printing	everything	from	index	number
1	to	index	number	15	in	the	variable	named	string2	.

A	number	of	escape	characters	are	also	present	in	Python.	They	are	listed	below:

\cx
\C-x
\e
\a
\b
\c
\f
\t
\v
\x

\r
\s
\xnn
\M-\C-x
\n
\nnn

You	should	look	into	the	definition	of	each	escape	character.	Try	to	use	each	one
in	your	string	and	see	its	result	for	a	better	understating	of	the	said	concept.

Several	string	related	operations	are	also	available	in	Python.	You	can	slice	your
desired	sub	string	from	a	main	string	using	the	slice	method.	The	+	sign	is	used	to
concatenate/join	multiple	 strings.	The	 *	 sign	 can	be	used	 to	 repeat	 the	 string	 n
times,	where	 n	will	be	a	number.	A	 string	can	also	be	 formatted	using	%	 sign.
These	are	the	most	basic	operations	related	to	strings.	In	order	to	get	more	detail,
kindly	 look	 on	 the	 internet.	 The	 following	 example	 is	 a	 very	 simple
demonstration	of	how	a	string	can	be	formatted.

Example:
print	("I	am	%s	and	I	weigh	%d	kg!"	%	('John',	13))
Output:
I	am	John	and	I	weigh	13	kg!
Press	any	key	to	continue	.	.	.

List	of	escape	characters	available	in	Python:

%c
%s
%i
%d
%u
%o
%x
%X
%e
%E
%f
%g
%G

You	might	have	noticed	that	I	always	use	double	quotation	marks	on	both	ends
of	 a	 string	 typed	 value.	 This	 is	 part	 of	 the	 syntax,	 and	 this	 tells	 the	 Python

interpreter	that	the	value	being	processed	is	a	string	.	Moreover,	there	is	a	use	for
triple	quotation	marks	as	well.	With	the	help	of	triple	quotation	marks,	your	string
value	can	span	over	multiple	lines.

Example:
print	("""This	is	an	example	of	triple	qoutation	marks,
you	can	see	that	the	print	statement	spans	more	than	one	line.""")
Output:
This	is	an	example	of	triple	qoutation	marks,
you	can	see	that	the	print	statement	spans	more	than	one	line.
Press	any	key	to	continue	.	.	.

Just	like	the	numbers	,	strings	also	have	a	lot	of	built-in	functions	in	Python.	I	am
listing	 a	 few	 of	 them	here,	 but	 it’s	 an	 assignment	 for	 you	 guys	 to	 go	 out	 and
explore	the	meaning	and	use	of	each	function.

capitalize
center
count
expandtabs
find
index
decode
encode
endswith
isalnum
isalpha
isspace
istitle
isupper
join
len
isdigit
islower
isnumeric
ljust

CHAPTER	8:	LISTS	AND	TUPLES

List	 is	 another	 commonly	 used	 data	 type	 in	 Python.	 Lists	 are	 nothing	 but	 a
collection	 of	 similar	 or	 different	 types	 of	 values.	 A	 list	 has	 the	 power	 to	 hold
values	that	belong	to	the	data	types	of	integers	,	strings	,	long	etc.	The	example	below
is	printing	the	values	present	inside	a	list	.

Example:
list	=[11,	22,	33,	44,	55,	66,	77,	88,	99,	1010,	1111,	1212,	1313,	1414,	1515,	1616,	1717,	1818,	1919,
2020]
for	number	in	list:
				print	(number)
Output:
11
22
33
44
55
66
77
88
99
1010
1111
1212
1313
1414
1515
1616
1717
1818
1919
2020
Press	any	key	to	continue	.	.	.

Example:
list	=["T","h","i","s","","b","o","o","k","","t","e","a","c","h"
							,"e","s","","P","y","t","h","o","n"]
for	character	in	list:
				print	(character)

Output:
T
h
i
s

b

o
o
k

t
e
a
c
h
e
s

P
y
t
h
o
n
Press	any	key	to	continue	.	.	.

Now	that	I	have	shown	you	how	to	print	out	items	present	in	a	 list	,	refer	to	the
subsequent	example	to	know	how	you	can	perform	an	update	or	delete	operation	on
an	element	inside	a	list.	The	first	example	is	for	updating	an	element.	I	will	pass
an	index	number	and	the	value	that	I	want	to	replace	with	the	original	value.	At
index	number	4	 ,	 I	used	special	characters	 to	create	gibberish.	Then,	I	 replaced
that	value.

Example:
list	=["T","h","i","s","_	&	*	%	$	#	@	!","b","o","o","k","","t","e","a","c","h"
							,"e","s","","P","y","t","h","o","n"]
#for	character	in	list:
print	(list[4])
list[4]="This	is	the	updated	list's	value"
print	(list[4])

Output:
_	&	*	%	$	#	@	!
This	is	the	updated	list's	value
Press	any	key	to	continue	.	.	.

You	can	delete	the	value	present	inside	an	index	too;	here’s	how:

Example:
list	=["This","_	&	*	%	$	#	@	!","book","teaches","Python"]
#
for	character	in	list:
				print	(character)
del	list[1]

print("")
for	character	in	list:
				print	(character)
Output:
This
_	&	*	%	$	#	@	!
book
teaches
Python

This
book
teaches
Python
Press	any	key	to	continue	.	.	.

Other	operations	that	you	can	perform	on	a	list	are	list	concatenation,	finding	the
length	 of	 a	 list,	 repeating	 the	 items	 of	 a	 list	 with	 respect	 to	 some	 number,
checking	if	an	element	is	a	member	of	a	list	or	not,	and	iteration.	Have	a	look	at
the	 examples	 shown	 below.	 Each	 example	 demonstrates	 an	 aforementioned
operation	respectively.

Example:	Multiplying	list’s	members	to	some	number.
list	=	["Hello!	"]
print	(list[0]	*5)
Output:
Hello!	Hello!	Hello!	Hello!	Hello!
Press	any	key	to	continue	.	.	.

Example:	List	concatenation.
list	=	["Hello	"]
list2	=["Mate!"]
print	(list[0]+list2[0])
Output:
Hello	Mate!
Press	any	key	to	continue	.	.	.

Example:	Checking	whether	an	element	is	part	of	a	list	or	not.
list	=	["Hello	"]
print	("Hello	"	in	list[0])
Output:
True
Press	any	key	to	continue	.	.	.

Example:	Calculating	length	of	the	value,	present	at	some	index	of	list.
list	=	["Hello	"]
print	(len	(list[0]))

Output:
6
Press	any	key	to	continue	.	.	.

Tuples	are	immutable	lists.	That	means	that	we	cannot	update	or	delete	any	element
inside	 a	 tuple.	 We	 can	 join	 them	 and	 perform	 other	 operations	 like	 tuple
concatenation,	finding	the	length	of	a	 tuple,	repeating	the	items	of	a	 tuple	with
respect	 to	some	number,	checking	whether	an	element	 is	part	of	a	 tuple	or	not
and	 iterating	 a	 tuple.	 Everything	 is	 the	 same,	 and	 you	 can	 use	 the	 above
examples	 to	perform	these	operations	on	a	 tuple.	The	only	syntactic	difference
between	the	list	and	the	tuple	is	that,	while	declaring	a	list,	we	use	square	brackets	[]
to	enclose	its	values.	The	tuple	declaration	involves	the	use	of	 round	bracket	 ()	 for
enclosing	 the	 elements.	 The	 following	 example	 shows	 how	 you	 can	 define	 a
tuple.	It’s	very	simple.

Example:
tuple	=	("Hello!	")
print	(tuple[0])
Output:
Hello!
Press	any	key	to	continue	.	.	.

As	I	told	you	guys	earlier,	you	can’t	perform	update	or	delete	operations	on	a	tuple.
I	thought	it	would	be	a	good	example	to	show	you	what	does	happen	when	you
try	to	do	so.	The	first	example	is	trying	to	delete	an	element	from	a	tuple.	I	am
handling	the	error	using	exception	handling	which	is	a	very	advanced	concept,	so	you
don’t	need	to	worry	about	it	right	now.	The	second	example	is	also	giving	me	an
error	stating	that	'tuple'	object	doesn't	support	item	Updation.

Example:
tuple	=("This","_	&	*	%	$	#	@	!","book","teaches","Python")
try:
				del	tuple[1]
except:
				print("'tuple'	object	doesn't	support	item	deletion")
Output:
'tuple'	object	doesn't	support	item	deletion
Press	any	key	to	continue	.	.	.

Example:
tuple	=("This","_	&	*	%	$	#	@	!","book","teaches","Python")
try:
				tuple[1]=	""
except:
				print("'tuple'	object	doesn't	support	item	Updation")

Output:
'tuple'	object	doesn't	support	item	Updation
Press	any	key	to	continue	.	.	.

CHAPTER	9:	DICTIONARY

Dictionary	is	another	data	type	available	in	Python.	It	is	similar	to	List	and	tuple	in
the	way	that	it	can	hold	values	of	different	types.	In	lists	and	tuples,	indexes	are
used	to	keep	track	of	values.	If	you	want	to	access	,	update	or	delete	a	value	in	a	list,
you	would	use	the	index	value	along	with	the	desired	operation.	Same	goes	with
the	tuple	except	the	fact	that	there	are	no	update	and	delete	operations	in	tuples.
In	 a	 dictionary,	 there	 are	 key	 value	 pairs.	A	 value	 is	 a	 key,	 and	 the	 other	 is	 the
value	associated	with	that	key.	Keys	work	just	like	index	numbers	work.	See	the
following	example	to	understand	how	you	can	declare	a	dictionary	.

Example:
dictionary	=	{'Name':	'John',	'Age':	27,	'Salary':	'1200$'}
print	("Name:",	dictionary['Name'])
print	("Age:",	dictionary['Age'])
print	("Salary:",	dictionary['Salary'])
Output:
Name:	John
Age:	27
Salary:	1200$
Press	any	key	to	continue	.	.	.

To	update	the	value	of	a	key	,	you	can	do	something	like	this:

Example:
dictionary	=	{'Name':	'John',	'Age':	27,	'Salary':	'1200$'}
print	("Name:",	dictionary['Name'])
print	("Age:",	dictionary['Age'])
print	("Salary:",	dictionary['Salary'])
print("\n	I	am	going	to	update	the	age	of	John	to	72\n")
dictionary['Age']	=	72
print	("Updated	Age:",	dictionary['Age'])
Output:
Name:	John
Age:	27
Salary:	1200$

	I	am	going	to	update	the	age	of	John	to	72

Updated	Age:	72
Press	any	key	to	continue	.	.	.

I	 used	 the	 key	 to	 first	 access	 the	 values,	 and	 then	 I	 used	 the	 key	 to	 update	 the
value	against	it.	If	you	want	to	add	a	new	key	value	pair	in	your	dictionary,	you	can
do	something	like	this:

Example:
dictionary	=	{'Name':	'John',	'Age':	27,	'Salary':	'1200$'}
print	("Name:",	dictionary['Name'])
print	("Age:",	dictionary['Age'])
print	("Salary:",	dictionary['Salary'])
print("\n	I	am	going	to	add	a	key	value	pair.	The	new	Dictionary	is:	\n")
dictionary['Country']	=	"United	States	of	America	(USA)"
for	key,value	in	dictionary.items():
				print	(key,":",	value)
Output:
Name:	John
Age:	27
Salary:	1200$

I	am	going	to	add	a	key	value	pair.	The	new	Dictionary	is:

Country	:	United	States	of	America	(USA)
Name	:	John
Age	:	27
Salary	:	1200$
Press	any	key	to	continue	.	.	.

To	delete	a	key	value	pair,	you	can	do	something	similar	to	the	following	example:

Example:
dictionary	=	{'Name':	'John',	'Age':	27,	'Salary':	'1200$'}
print	("Name:",	dictionary['Name'])
print	("Age:",	dictionary['Age'])
print	("Salary:",	dictionary['Salary'])
print("\nI	am	going	to	delete	a	key	value	pair.	The	updated	Dictionary	is:	\n")
del	dictionary['Salary']
for	key,value	in	dictionary.items():
				print	(key,":",	value)
Output:
Name:	John
Age:	27
Salary:	1200$

I	am	going	to	delete	a	key	value	pair.	The	updated	Dictionary	is:

Age	:	27
Name	:	John
Press	any	key	to	continue	.	.	.
Numerous	built-in	 functions	 are	 also	 available	 for	 dictionaries.	You	 should	 go
ahead	and	check	them	out.

CHAPTER	10:	FUNCTIONS
Basically,	 functions	 are	 a	 block	 of	 code.	 This	 block	 of	 code	 is	 comprised	 of	 a
single	or	multiple	programming	statements.	Functions	make	your	code	re-usable.
To	calculate	 the	 sum	of	a	pair	of	numbers	at	 five	different	occasions,	you	can
write	a	function	that	could	do	that	and	can	call	that	function	any	time	you	want.
Otherwise,	you	could	rewrite	the	code	repeatedly	to	get	the	job	done.	The	later
approach	is	inefficient,	dull,	and	not	desirable	at	all.	Functions	also	allow	you	to
create	different	modules	of	a	program.	Think	of	a	module	as	a	part	of	an	engine,
which	has	to	do	its	job	to	make	the	engine	work.	Code	which	has	been	divided
into	modules	 is	more	maintainable.	 That	 code	 is	 also	 easier	 to	 understand	 for
anyone	who	uses	that	code.	Let’s	start	with	defining	a	function,	and	then	we	will
do	something	more	with	it.

Example:
def	sum(num1,num2):
			sum	=	num1	+	num2
			print	("The	sum	of	two	numbers	passed	is:",sum)
			return

I	 have	 declared	 a	 function	 named	 sum	 .	 This	 function	 or	 method	 takes	 two
numbers	as	inputs.	Then,	the	sum	is	stored	in	the	variable	called	sum	.	After	that,
this	value	inside	the	sum	variable	is	displayed,	and	then	the	function	call	ends.

Now	 the	question	 is	what	 is	a	 function	 call	 ?	A	 function	call	 is	 something	 that	 is
used	to	call	a	function.	For	example,	if	I	suddenly	come	up	with	this	need	to	sum
two	numbers,	now	I	know	that	I	have	a	function	that	does	exactly	that,	and	I	can
call	it.	In	order	to	understand	how	calling	a	function	works,	refer	to	the	example
shown	below:

Example:
def	sum(num1,num2):
			sum	=	num1	+	num2
			print	("The	sum	of	two	numbers	passed	is:",sum)
			return

sum	(1,2)
sum	(3,4)
sum	(5,6)
Output:
The	sum	of	two	numbers	passed	is:	3
The	sum	of	two	numbers	passed	is:	7
The	sum	of	two	numbers	passed	is:	11
Press	any	key	to	continue	.	.	.

The	statements	in	red	are	the	function	calls.	The	numbers	passed	to	the	statement
call	are	called	arguments	.	If	you	want	to	pass	more	arguments,	you	have	to	change
the	definition	of	the	function	to	accept	more	arguments.	There	are	four	types	of
function	arguments:

Default
Required
Variable	length
Keyword

The	 required	 arguments	 are	 the	 kinds	 of	 arguments	 that	 you	 have	 to	 pass	whilst	 calling	 a	 function.	The
order	 in	which	 the	 arguments	 are	 being	 passed	 should	match	 to	 the	 order	 of	 parameters	 allowed	 by	 the
function’s	definition.	An	error	occurs	when	you	don’t	pass	any	argument	whilst	calling	the	function	in	the
successive	example:

Example:
def	sum(num1,num2):
			sum	=	num1	+	num2
			print	("The	sum	of	two	numbers	passed	is:",sum)
			return
sum()
Output:
Type	Error	was	unhandled	by	user	code
Message:	sum	()	missing	2	required	positional	arguments:	'num1'	and	'num2'

Keyword	 arguments	 are	 the	 kind	 of	 function’s	 arguments	 that	 are	 passed	 in	 a
function’s	 call	 by	 mentioning	 the	 name	 of	 the	 parameter	 in	 the	 function’s
definition.

Example:
def	sum	(num1,num2):
			sum	=	num1	+	num2
			print	("The	sum	of	two	numbers	passed	is:",sum)
			return
sum	(num1	=	2,	num2	=	3)
Output:
The	sum	of	two	numbers	passed	is:	5
Press	any	key	to	continue	.	.	.

When	 the	value	of	an	argument	 isn’t	passed	whilst	 its	 function’s	call,	 its	default
argument	comes	into	play.	Look	at	the	code	below;	I	am	not	passing	the	value	to
num2	in	the	highlighted	print	statement.

Example:
def	sum	(num1,	num2	=	1):
			sum	=	num1	+	num2
			print	("The	sum	of	two	numbers	passed	is:",sum)

			return
sum	(num1	=	2,	num2	=	3)
sum	(num1	=	3)
Output:
The	sum	of	two	numbers	passed	is:	5
The	sum	of	two	numbers	passed	is:	4
Press	any	key	to	continue	.	.	.

The	 functions	which	 I	defined	here	are	called	 user	 defined	 functions.	A	bunch	of
built-in	 functions	 are	 also	 available	 in	 Python.	 Print	 is	 one	 of	 those	 pre-built
functions.

You	 saw	 the	 use	 of	 the	 return	 keyword	 in	 the	 examples	 of	 this	 chapter,	 but	 I
haven’t	explained	its	meaning.	The	return	statement	basically	returns	the	control
to	 the	 module	 that	 is	 not	 part	 of	 the	 function.	 You	 could	 also	 use	 a	 return
statement	 to	 return	 a	 value	 or	 a	 set	 of	 values.	 In	 the	 future,	when	you	will	 be
creating	applications	much	bigger	 than	the	ones	being	shown	in	this	book,	you
will	often	feel	the	need	to	use	a	function	to	perform	some	task	and	at	the	end	of
the	task,	you	would	want	to	take	the	value	and	use	it	somewhere	else.	Well,	this
is	 what	 I	 am	 going	 to	 show	 you	 in	 the	 next	 example.	 I	 will	 be	 adding	 two
numbers	together,	and	the	sum	of	those	numbers	will	be	used	in	a	multiplication
operation.

Example:
sumValue=	0
def	sum(num1,	num2	=	1):
			sumValue	=	num1	+	num2
			print	("The	sum	of	two	numbers	passed	is:",sumValue)
			return	sumValue
sumValue	=	sum(num1	=	2,	num2	=	3)

print	("The	result	of	multiplying	5	with	the	sum	of	two	numbers	is:",	sumValue	*	5)

Output:
The	sum	of	two	numbers	passed	is:	5
The	result	of	multiplying	5	with	the	sum	of	two	numbers	is:	25
Press	any	key	to	continue	.	.	.

You	can	see	that	I	created	a	variable	named	sumValue	and	assigned	a	value	of	zero
to	 it.	 Then,	 I	 used	 the	 sum	 function,	 returned	 the	 result,	 and	 stored	 it	 in	 the
sumValue	.	Finally,	I	used	the	print	statement	to	show	the	result	of	multiplication	on
the	screen.

A	 variable	 method	 has	 a	 scope.	 Its	 scope	 could	 be	 either	 global	 or	 local	 .	 The
variable	named	sumValue	is	a	global	variable	with	regard	to	the	function	sum	.	The

variables	used	as	 function’s	parameters	 (num1	and	num2)	are	 local	variables.	The
main	difference	 is	 that	a	 local	variable	 like	num1	and	num2	will	only	exist	 if	 the
function	 gets	 called.	 Otherwise,	 these	 variables	 will	 not	 be	 defined.	 But	 the
sumValue	variable	will	be	created	and	will	last	until	the	program	terminates.

CONCLUSION
Congratulations	 are	 in	 order	 here.	 You	 guys	 have	 successfully	 completed	 the
introduction	part	required	for	Python.	If	you	have	read	the	book	and	have	tried
examples	and	assignments	that	I	suggested,	then	my	friend,	you	are	now	ready	to
go	 to	 the	 next	 level	 of	 learning	 Python.	 There	 are	many	 advanced	 topics	 that
were	not	covered	in	this	book.	You	have	to	go	ahead	and	look	into	how	Python
is	used	as	an	object-oriented	programming	language.	You	need	to	also	learn	the
object-oriented	 paradigm.	 Python	 is	 used	 in	 industry	 as	 a	 scripting	 language.
Information	security	professionals	often	use	it.	Even	web	developers	use	Python
for	 developing	 web	 applications.	 So,	 you	 should	 first	 learn	 all	 the	 advanced
topics	of	Python,	and	 then	you	should	decide	what	 field	you	want	 to	pursue.	 I
wish	you	best	of	luck	for	the	future.

	Introduction
	Chapter 1: Environment Setup
	Chapter 2: Python’s Basics
	Chapter 3: Variable Types
	Chapter 4: Decision Makers in Python
	Chapter 5: Loops in Python
	Chapter 6: Numbers in Python
	Chapter 7: Strings in Python
	Chapter 8: Lists and Tuples
	Chapter 9: Dictionary
	Chapter 10: Functions
	Conclusion

